Quote:
Originally Posted by 68TT396
OK, who do we know that can do an epoxy mold drop hammer production run of cowl hoods, trunk lids & cowl panels for us? These would be a great starting point as they will fit all first gen Camaro's. The year specific parts like doors, fenders, header & valance panels and bumpers can come later after the process is ironed out and gets some popularity.
Bumpers and their mount brackets might be an easy first step in doing this for somebody interested even though they are year specific.
On A-body cars this could save a ton of weight putting on aluminum bumpers & mount brackets. They could even be chrome plated to look completely stock.
|
=======================================
I'll quickly run through some of the steps necessary to make parts off of plastic die sets. It won't be complete, because it is late and I'm tired, but it should be close enough to give you an idea.
First
1) How big is your production run?
2) A complete hood would be pushing the limits of a Hammer forming press because of size, however some of the larger presses might be able to do something that large.
3) The process of making any of these is very methodical, but easy if you don't get in a hurry.
First Get a good part to make your dies from. Take the good part and put a releasing agent on it. Usually paste wax will due
Off the part create:
a) A checking fixture (This fixture will be used as a reference as to the quality of the part being made. With this you will also use a template to scribe your newly formed parts. The scribing will also show where to drill registration holes. (Out side of the actual part surface) These holes will make sure the new part is on the checking fixture in the right place. The checking fixture will have dowels in it where the new piece is to be placed. once everything lines up and is checked for a tight fit, the part is trimmed along the scribed lines and is ready to be used. Sometimes due to material thickness variation or wear on the die set a part will fail when used on the checking fixture. In this case, hand forming (Tweeking) might have to take place to slightly modify part until it conforms acceptably to the checking fixture. Once it passes the trimming can be done.
b) A good reliable source for consistent material ( type, thickness, etc.) will need to be acquired.
c) Access to a the correct presses (many of these can probably be found for a song in the Detroit area (Many of these presses in the automotive or aerospace companies have been around since the 1940's), or any area where metal parts were formed for aircraft (or cars) when they were primarily aluminum. If nothing else many shops, especially prototype shops will do small runs (25 - 100 parts)
d) You make your die set out of a good quality part, surface coat (gel-coat) that was made for part production. These gel coats are enhanced with ceramic powder, (Alumina Oxide), iron powder, silicon carbide etc. depending on cost and how many parts you want to make) These extra ingredients add abrasion resistance to the surface so the dies will last a long time.
A wooden box will be made to support and surround the part while the pouring of the material is being done and the initial cure is taking place.
The die set is made 1/2 at a time. Once the gel coat is applied to the part and becomes tacky, pour in a very slow curing epoxy. In weights over 1 pound expect a cure time from 1 to 10 days, otherwise excessive heat will build up and ruin the die by causing excess shrinkage or even fire (If you have a moron as a chemist) This will need to be poured 6-12 inches thick depending on the shape of the part being made. The die will have to be larger than the part by 4-8 inches on all sides for strength and to allow the excess area of the part being made to have a place to be. Once this has cured, remove part from initial casting. and turn the first part of the die on it's back with the part side up. Wax the surface of the die half as a releasing agent. Then place sheet wax (Melting point over 150 degrees) instead of the original part of the same thickness of the part, where the original part used to sit.
Carefully brush on the gel coat over the entire surface making sure to relieve all radiuses of any air pockets. (Brushing in one direction will usually work in this case) Once completed and the gel coat is tacky pour in another batch of the properly mixed epoxy compound. Again let cure depending on the amount and size of the part.
Once initial cure has taken place, take a hardness test of the epoxy. it should read 75-80 on a shore "D", Durometer. If possible at this point, slide into an oven at 100 degrees for 3-6 hours. Raise temp to 125 degrees for 3-6 more hours, and finally to 150 degrees for 3-6 final hours. Once die set has come back to room temp (25 C/77 F) Take another hardness reading. it should have hardened up into the 85 to 92 range on the durometer. This will depend on what was used as an elastomer (sp) in the plastic. (This gives the epoxy it's impact resistance. usually it is type of pour-able rubber compound that takes the brittleness out of the cured plastic. ATBN is a common compound used in hammer formed dies)
At this point separate the die set and machine off the back sides until each half is level. Mount each half onto a piece of plate steel as to give a very solid foundation to the plastic die set, and something that can be used to mount the die in the hammer press.
You can start making your initial parts at this point.
I'll writie more is you have some questions. I'm pooped right now.
Take care,
Ty